Announcements

1) Exam Thursday after Thanksgiving

Recall: we were solving

$$
r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\alpha r^{2} f(r)=0
$$

We supposed

$$
f(r)=\sum_{n=0}^{\infty} a_{n} r^{n}
$$

and obtained

$$
a_{1} r+\sum_{n=2}^{\infty}\left(n^{2} a_{n}-\alpha a_{n-2}\right) r^{n}=0
$$

Since a "polynomial" is zero only if all coefficients are zero, we get

$$
\begin{aligned}
& a_{1}=0, \\
& n^{2} a_{n}-\alpha a_{n-2} \\
& a_{1}=0_{1} \\
& 9 a_{3}-\alpha a_{1}=0
\end{aligned}
$$

$$
n^{2} a_{n}-\alpha a_{n-2}=0, n \geq 2
$$

(second equation, $n=3$)
so $\quad a_{a_{3}}=0, a_{3}=0$.
$\left(2^{\text {nd }}\right.$ equation, $\left.n=5\right)$

$$
\begin{aligned}
& 25 a_{5}-\alpha a_{3}=0, \text { but } \\
& a_{3}=0, \text { so } \\
& 2595=0 \text { and } a_{5}=0 .
\end{aligned}
$$

Using recursion,

$$
a_{n}=0 \text { for } n \text { odd }
$$

For the remainder of the coefficients, $n=2 k$ for $k=1,2,3, \cdots$ (n even) and we can choose any value for a_{0} since it does not appear in the sum other than through recursion.

$$
\frac{(2 k)^{2} a_{2 k}-\alpha a_{2(k-1)}=0}{\text { for } k=1,2,3, \ldots}
$$

$$
\begin{aligned}
& k=1 \\
& 4 a_{2}-\alpha a_{0}=0 \\
& \text { so } a_{2}=\frac{\alpha a_{0}}{4} \\
& k=2 \\
& 16 a_{4}-\alpha a_{2}=0 \\
& \text { so } a_{4}=\frac{\alpha a_{2}}{16} \\
&=\frac{\alpha}{16}\left(\frac{2 a_{0}}{4}\right) \\
&=\frac{\alpha^{2}}{4 \cdot 4 \cdot 4} a_{0}
\end{aligned}
$$

$$
\begin{gathered}
k=3 \\
36 a_{6}-\alpha a_{4}=0 \\
a_{6}=\frac{\alpha a_{4}}{36} \\
=\frac{\alpha}{36}\left(\frac{\alpha^{2} a_{0}}{64}\right) \\
=\frac{\alpha^{3} a_{0}}{9 \cdot 4 \cdot 4 \cdot 4 \cdot 4}
\end{gathered}
$$

$$
\begin{aligned}
& k=u \\
& 64 a_{8}-\alpha a_{6}=0 \\
& a_{8}=\frac{2 a_{6}}{64} \\
&=\frac{\alpha}{64} \cdot \frac{a_{0}}{(9 \cdot 4) 2^{3}} \\
&=\frac{\alpha^{3} \cdot a_{0}}{(16 \cdot 9 \cdot 4) 4^{4}} \\
& a_{2 k}=\frac{\alpha^{k} a_{0}}{(k!)^{2} 4^{4}}
\end{aligned}
$$

